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Abstract- Methods for handling imprecision and uncertainty in
computer-based analysis of fetal heart rate patterns and ECG
wave shape during childbirth  are presented.  Computational
intelligence models, based on fuzzy logic techniques, that
explicitly handle the  imprecision and uncertainty inherent in
the data obtained during childbirth and methods of interpreting
the data are proposed.  The ability to handle imprecision and
uncertainty in clinical data and method of interpretation is vital
to remove a key obstacle in electronic fetal monitoring.

Keywords -  Electronic fetal monitoring, fetal heart rate,
cardiotocogram, fetal ECG,  fuzzy logic, computational
intelligence models.

I. INTRODUCTION

Methods for handling imprecision and uncertainty in
computer-based analysis of fetal heart rate patterns and
electrocardiogram (ECG) wave shape during labour are
described. Childbirth is a critical period for the fetus and
mother. The outcome of labour is normally good, but
sometimes problems occur that may lead to injury (e.g. fetal
brain damage) or even death [1,2].  Electronic fetal
monitoring, introduced in the late 1960's [3], was expected to
improve patient care, but this has not yet happened.  The most
common monitoring method is based on a continuous trace of
the fetal heart rate pattern and maternal contractions, known
as the cardiotocogram (CTG). Difficulties in the
interpretation of the CTG have led to unnecessary medical
interventions (e.g. Caesarean sections and forcept deliveries)
[2] and a failure to intervene when necessary [1] (which can
lead to preventable injuries and deaths). These problems have
led to the development of a number of computerized systems
to assist with the analysis and interpretation of CTG [4-10].
However, despite over two decades of development no
system is in widespread routine clinical practice.

Progress in computerized CTG analysis has been impeded
by several factors.  First, there are significant, inherent
problems of imprecision and uncertainty in the clinical data
and the interpretation methods used [11].  These problems
have yet to be addressed in computerized CTG systems.
Secondly, the CTG does not contain sufficient information
for accurate assessment of the fetal condition [12].
Additional information may be obtained by a proper analysis
of changes in the fetal electrocardiogram (ECG), but the
problems of  uncertainty and imprecision also exist in fetal
ECG analysis.

We have proposed computational intelligence models,
based on fuzzy logic techniques, to explicitly handle the
imprecision and uncertainty in clinical knowledge and data.

In this paper, we describe the models and their application to
fetal heart rate and ECG analysis. In sections II and III,
respectively, the development of the models for CTG and
ECG analysis will be presented. In each case, we start with a
highlight of the nature and sources of imprecision and
uncertainty  to provide the basis for designing the fuzzy
models.

II. MODELLING UNCERTAINTY AND IMPRECISION IN FETAL
HEART RATE ANALYSIS

A. Uncertainty and imprecision in fetal heart rate analysis

Over the last three decades, several CTG features have
been identified and basic guidelines for their interpretation
established to provide clinicians with a method of predicting
the condition of the fetus and outcome of labour [3, 13, 14].
The five key features in the CTG are heart rate baseline,
acceleration and deceleration in heart rate, heart rate
variability and uterine contractions, see Figure 1.
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Fig. 1. An example 15 minute segment of  cardiotocogram - fetal heart rate
(top trace) and uterine contraction (bottom trace) showing the key features. 1)

baseline 2) variability, 3) acceleration, 4) deceleration and 5) contractions

In CTG analysis systems, each feature is identified and
then classified using rules derived from the guidelines [13],
see for example Tables I and II. The problem is that the
guidelines are based on empirical observations and lacks
precision because of the high false positive abnormality rate
of the CTG. This has led to a situation where two "experts"
can give different interpretations of the same CTG trace.
Further, there are no precise expected outcome for a given set
of features even when interpreted consistently. A reason for
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this is that the CTG features alone are insufficient to give an
accurate indication of fetal condition. More clinical
information is needed for a realistic interpretation of data. In
addition, methods used to identify CTG features are inexact
and vary from system to system.

Most current computerized intelligent CTG systems use
crisp models [8-10, 14], despite the imprecision and
uncertainties in the clinical knowledge and data. An example
of typical statements that describe the interpretation of CTG
features is: "If there is a baseline bradycardia and the
variability is quite low and there are no accelerations then I
would consider the trace to be very abnormal." Such a
statement might be represented in a crisp model using a rule
of the form:

IF Baseline < 90 AND Variability < 5 AND Accelerations =
0 THEN CTG is Severely Abnormal

The crisp rule does not capture the obvious vagueness
inherent in the clinician's model of CTG interpretation.
Further, as is evident from the first columns of Table 1 and 2,
small changes in the CTG features can produce a different
classification. Such an abrupt change in classification does
not represent clinical reality.  Although the classification
boundaries are precise (see for example, the left hand column
in Table 1), an experienced clinician would take adequate
care in interpreting CTGs that are near the boundaries
because of the normal physiological variations and
differences between fetuses. The problem in crisp CTG
expert systems is that an imprecise clinical model is
represented as a precise computer model. What is required is
a model that caters for the inherently vague domain
knowledge and imprecise clinical data to enhance the
robustness and performance of CTG based electronic fetal
monitoring systems.

TABLE I
Classification of baseline heart rate

Baseline (beats per minute) Linguistic
Classification

<90 Bradycardia
90-109 Slight Bradycardia
110-159 Normal
160-180 Slight Tachycardia
>180 Tachycardia

TABLE II
Classification terms for heart rate variability

Variability (beats per minute) Linguistic
Classification

<2 Absent
2-5 Reduced
6-25 Normal
>25 Increased

 A variety of different techniques may be used to handle
the imprecision and uncertainty in CTG and ECG analysis,
but fuzzy logic and fuzzy set theory offer the most

comprehensive and flexible framework to address the
problems [15]. In particular, we have found that they are
suited to modeling human clinical decision making and
behaviour. In addition, the parameters of the fuzzy model
(e.g. fuzzy sets and fuzzy rules)  are accessible to clinicians in
a natural form and this is an important factor in the successful
development of the model.

B. Fuzzy model for CTG analysis

The two key parameters of a fuzzy model are the fuzzy
sets and fuzzy rules. The main issues in the design of the
fuzzy sets for CTG analysis include the choice of the shape of
membership functions for the sets, set names, number of sets,
position and universe of discourses for the sets.  The fuzzy
model presented here is for front-end CTG analysis. The
existing crisp system is used as a starting point in the
development of the model as it has captured the essential
clinical knowledge [8,16].

The fuzzy sets are used to represent the four features of
the CTG (baseline, variability, accelerations and
decelerations) and the CTG segment. They model the
linguistic classification of the features and the  classification
of CTG segments.  The linguistic terms and classifications for
the CTG features are:

Baseline {Bradycardia, Slight Bradycardia, Normal, Slight
tachycardia, Tachycardia}
Variability {Absent, Reduced, Normal, Increased}
Accelerations {Absent, Present}
Decelerations { Absent, Present, Severe}

The linguistic terms for the CTG features are a natural
choice for fuzzy set names. In the case of Baseline and
Variability, the widths and positions of the sets are
determined by the end points in the clinical guidelines in
Tables I and II.  In the case of  Acceleration and Deceleration,
the widths and positions of the sets are arbitrary as they have
no clinical significance. Sigmoid curves are used for the
membership functions as they represent clinical model for
CTG analysis more realistically than triangular functions.

There are two sets of  rules for CTG analysis:

• A set of rules for classifying each of the four CTG
features - Baseline, Variability, Accelerations and
Deceleration.

• A rule set to provide an overall classification for the
segment. This rule set was derived from rules used in the
crisp model. The crisp rule set was considered extremely
inefficient and so the ID3 rule induction algorithm [17]
was used to reduce them from 120 to 33 without altering
the same performance.  An example of this type of rule
is: “IF Baseline is Normal AND Deceleration is Severe
AND Variability is Absent THEN Segment is Severe
Abnormal”.
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     The fuzzy model that incorporates the fuzzy sets and fuzzy
rules is depicted  in Figure 2. The features of heart rate and
contractions are first identified using numerical algorithms
and then fuzzified. The fuzzified feature set is then used to
produce a segment classification using the second rule set
[18]. Max-prod inference is used to apply the rules. The
segment classification output set is defuzzified using the
centroid method to give a scalar value (0 – 100), to provide
an overall index of the segment abnormality.

C. Evaluation of the fuzzy model for CTG analysis

The fuzzy model was used to process CTG traces and its
performance compared to that of  the crisp model and to four
clinical experts. Ninety five 15-minute segments of CTG
traces were chosen from a data base of approximately 6, 500
hours of digitized CTG data. The segments selected were not
used in the development of the crisp or fuzzy models and
contained as many combinations of CTG features as possible.
15-minute segments were used as this was considered to be
the minimum clinically useful length of trace. The segments
were independently evaluated by four clinicians all with
significant experience of CTG interpretation. The reviewers
were asked to analyze each 15-minute segment and give a
score between 0 and 39, indicating how normal or abnormal
they considered the heart rate pattern to be (see Table III).

TABLE III
Protocol used by reviewers to score the CTG traces. This shows the

relationship between  the scores and linguistic classification of the trace.

Score Linguistic
Classification

0-9 Normal
10-19 Intermediate
20-29 Abnormal
30-39 Severely abnormal

Results. The CTG traces were ranked by score for each
reviewer and by the output scores derived from the crisp and
fuzzy models. Table 4 shows the agreement in case ranking
between the models and reviewers, based on Spearman rank
correlation statistic, with correction for tied ranks [18].
Although absolute scoring of CTGs should be interpreted
with care, the results show that the agreement of the fuzzy
system with each of the reviewers, particularly the two
practicing clinicians (A to C), is higher than that of the crisp
model. The result suggests that, potentially, there are benefits
in the use of fuzzy techniques to improve the performance of
crisp CTG  systems. The output of the fuzzy model has a
high correlation with that of the crisp model. This is likely to
be because the current fuzzy model is an evolution of the
crisp model and use the same rules. It is interesting to note
that the crisp model has the highest correlation with expert C
who was involved in its initial development. The three
practicing clinicians A, B and C, have a high agreement in

ranking.  This implies that common criteria are being used for
the relative assessment of the traces, but the assignment of an
overall linguistic description to a trace may be inconsistent.
Reviewer D has a much lower agreement in ranking than the
other reviewers. It is interesting to note that this reviewer,
while experienced in CTG assessment, is not involved in day
to day management of labour in a clinical setting. It is likely
that different criteria for assessment are being used, which
may not be directly applicable for clinical use.

TABLE IV
Spearman rank correlation of segment ranking between reviewers, the crisp
and fuzzy models.

 Reviewer    A           B           C           D          Crisp     Fuzzy

 A                 -           0.80       0.37        0.54      0.51       0.73
 B                 0.80      -            0.59        0.54      0.50       0.67
 C                 0.37      0.59       -             0.36      0.46       0.50
 D                 0.54      0.54      0.36        -           0.55        0.59
 Crisp           0.51      0.50      0.46        0.55      -             0.82
 Fuzzy          0.73      0.67      0.50        0.59      0.82        -

    During the study, it was found that the behaviour of the
crisp model depended on the starting point on the CTG trace
and hence the relative positions of the segments. Small shifts
in the starting position could lead to significant differences in
the classification of the segment. The sequence of segment
classifications is crucial to the overall assessment of a CTG
record in practice and hence could lead to significant
differences in the recommended clinical action. To quantify
the behaviour of the models, the starting point for analysis
was varied by up to 30 seconds. It was found that the crisp
model had a classification error of 5.67% compared to 1.42%
for the fuzzy model.

III. MODELLING UNCERTAINTY AND IMPRECISION IN
ECG ANALYSIS

A. Uncertainty and imprecision in ECG analysis

The fetal ECG may be used, in association with the CTG
features, to obtain an enhanced assessment of the condition of
the fetus during labour [12, 19].  The fetal ECG can be
collected by scalp electrodes from the second stage of labour
and is thought to provide a more direct indication of fetal well
being. However, interpretation of fetal ECG features is
difficult, particularly in real time at the bedside. Figure 4
illustrates some of the  important features of the ECG,
including the ST waveform and the R-to-R intervals from
which the fetal heart rate pattern. Changes in the ST
waveform may be quantified as a ratio of the amplitude of the
T wave to that of the QRS, known as the T/QRS ratio, and the
ST area. [12, 19].
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A major source of uncertainty and imprecision is the
clinical knowledge itself.  Much of the knowledge is
qualitative and  based on experience and observations which
cannot be easily verified experimentally. The imprecision in
the knowledge is evident from the following two rules
derived from the clinical guidelines [20]:  “IF CTG is
Intermediate AND TQRS is normal THEN No Action; (2) IF
CTG is Abnormal and TQRS is high and there are no
significant changes in the TQRS values THEN take FBS or
deliver”. In addition, the classification of the ECG features
suffers from threshold problems (e.g. abrupt jumps in
decision boundaries). Errors in the measured features, e.g.
due to poor signal quality,  are a further source of uncertainty
[21]. These can lead to false or missed changes in the ECG
features.  The natural variability of some of the features
between fetuses can also lead to misinterpretation.  A crisp
model is clearly inappropriate for ECG analysis. We have
used fuzzy logic to cater for the above problems and to
capture expert knowledge in a more natural form. The use of
fuzzy logic makes the model less sensitive to noise or errors
and natural variability in the data.

B. Fuzzy model for fetal ECG analysis

As with the model for CTG analysis, the two primary design
parameters in the fuzzy ECG model are the fuzzy sets and the
fuzzy rules.  In the design of fuzzy sets, it is necessary to first
describe the features and facts using linguistic variables. The
important linguistic terms used in the clinical guidelines [21]
are given below. The words in brackets are the different
categories.

• T/QRS Ratio: {Constant , Increasing, Rising, Rapidly
Increasing, Negative, Positive, High,  Normal}

• ST Waveform : {Normal, Depressed, Negative, Elevated,
Raised, Bi-Phasic, Changing, Acute change}

• CTG Pattern: {Normal reactive, Intermediate,
Abnormal, Normal, Pre-terminal}

• Heart Rate Declarations: {Persistent, Late, Variable,
Present, Not Present}

• Baseline Heart Rate: {Increased, bradycardia, Low,
tachycardia, High, Normal, Rapid return}

• Heart-rate Variability: {Increased, Decreased, Normal,
Undulating}

Some of the terms imply instantaneous events (e.g. High
T/QRS ratio) and others imply time (e.g. Rapidly Increasing
T/QRS ratio or constantly elevated ST waveform). To handle
these, new fuzzy variables have been created as follows:

CTG
(I.N.F.A.N.T.) FETAL ECG FEATURES

| ST Grad | Stpeak1 | Stpeak2 |       | TQRS+ | TQRS- |       | ∆∆∆∆TQRS+ |

FEEDBACK
INFERENCE

ST-SEGMENT
SHAPE

T-COMPLEX
SHAPE

FETAL
CONDITION

MATRIX

STATIC
PATTERN

RECOGNITION

4

ST-WAVEFORM
SHAPE

FUZZY
STATE

MACHINE

T-COMPLEX
DYNAMICS

Fig. 4. Fuzzy model for ECG analysis

• ∆T/QRS(20): {Low, Medium High} //Change in
T/QRS over 20 minutes

• ∆T/QRS(15): {Low, Medium High} //Change in
T/QRS over 15 minutes

• ∆T/QRS(10): {Low, Medium High} //Change in
T/QRS over 10 minutes

• ∆T/QRS(5): {Low, Medium High} //Change in
T/QRS over 5 minutes

• STSegment { Normal, Biphasic, Depressed, Elevated}
• Tcomplex{Negative, Normal, Elevated, Highly Elevated}

     In the design of the fuzzy sets, we have used the linguistic
terms as set names to keep close to  the language of the
clinicians. Triangular membership functions are used for
simplicity.  Parameters of the fuzzy sets, such as set positions
and universe of discourses, are derived from the clinical
guidelines and through discussions with clinical experts.
     The fuzzy rules are derived from the clinical guidelines and
from extensive formal and informal consultation with expert
clinicians. There are four categories of rules as follows:
• Rules for assessing the quality of ECG data. Fetal ECG

features are susceptible to distortion and need to be
interpreted in proper context. The rules are used to
provide an index of data quality, e.g. the severity of
baseline shifts in the data.

• Rules for CTG analysis and interpretation. ECG features
can only be properly interpreted if this is carried out in
association with CTG analysis. At present the rules for
CTG analysis are provided by our crisp system [8, 16],
but in future these will come from the fuzzy CTG
analysis model (see section II).



5

• Rules for Static Pattern Recognition – These are for the
recognition and classification of  important changes in
the T complex shape and ST shape.

• Rules for Dynamic Pattern Recognition – These are
      rules for managing the progressive changes in ECG
      wave shape and for keeping track of past events.

     The fuzzy model that embodies the fuzzy sets and rules
above is depicted in Figure 4.  The two bottom  modules in
the model (i.e. the fuzzy state machine and fetal condition
matrix), play an important role in the dynamic  pattern
analysis of the ECG. During labour different sequences of
events occur which can modify the way the expert interprets
the instantaneous features. A fuzzy state model is proposed to
represent and model the expert strategy for handling
sequences of events in the course of  labour, see Figure 5
[19].  Each state, represented by a circle, has a full set of rules
associated with it.   During the first stages of monitoring (the
Entry State) a labour may be regarded as normal unless there
is a prior knowledge to suggest otherwise. When a
significant,  new piece of information becomes available, a
change of state will occur (e.g. State C) and the rules change.
     The outcome of ECG analysis and the recommended
action may be summarized in the form of a matrix (see Figure
6). Each element of the matrix produces a truth value for each
of the conditions which can be de-fuzzified to a single point
on a fuzzy condition map. The fetal Condition Matrix (FCM)
provides a summary of the current fetal state at a glance. It is
directly related to  the clinical guidelines and is one which the
midwifes are familiar. This is an effective and simple
analogue display device. Examples of the use of the fetal
condition map in ECG analysis are given in Figures 7(a) and
(b). Figure 7(a) is a typically normal case where the T/QRS
ratio is constantly below 0.24 and the CTG is perfectly
normal. Figure 7(b) is a perfectly normal case until the
baseline heart-rate drops and stayed at 60bpm (abnormal
CTG). The condition of the fetus is shown as a ‘moving
point’ on the fetal condition matrix.

IV. DISCUSSION AND CONCLUSIONS

We have presented two fuzzy logic models for CTG and
ECG analysis to handle the imprecision and uncertainty in the
clinical data and knowledge during labour. The model for
CTG analysis was compared to existing crisp model and
initial results indicate that the fuzzy logic approach gives
improved performance.
     The fuzzy ECG model includes a method, based on finite
state machine concepts,  for handling the sequences of events
during the course of labour, and adds memory to the model.
This is an important aspect of the model as there are many
situations during labour in which the expert's interpretation
of the CTG is informed by previous events and their
sequence. These include the following:

STATE OF

REDUCED

REACTIVIT

ENTRY

STATE

ACTION

FBS OR

DELIVER
Persistent negative or bi-phasic

ST segment, synchronised with

contractions for >1Hr, or

Abnorm

al

Persistent negative or bi-phasic

ST segment, unsynchronised with

contractions

Persistent negative or bi-phasic

ST segment, synchronised with

contractions

Normal

CTG & ECG
Abnormal / Intermediate

CTG

ECG

Normalises within

10 contractions

Fig. 5. Fuzzy state machine used to represent and recall events during labour

ST Waveform
\

CTG

Normal High and Stable Negative or
Rising

Normal
A

No Action
B

No Action
C

FBS1 or
Deliver

Intermediate
D

No Action
E

FBS or Deliver4
F

Deliver2

Abnormal
G

FBS or
Deliver4

H
Deliver

I
Delive

r3

Fig. 6 Fetal condition matrix used to guide clinicians

A B C

D E F

G H I

C
T
G

ST Waveform

 (a) Normal CTG and Normal ECG

A B C

D E F

G H I

C
T
G

(b) Normal ECG and Normal CTG with a
sudden progression to Abnormal CTG

ST Waveform

Fig. 7 Examples of fetal condition map

• An individual abnormal event is only short lasting, so its
validity is in question.

• An event is only partially true - i.e. suspicious but not
marked enough to warrant action.

• An event has occurred before, therefore adding to the
belief that it is genuine and not noise.
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• A different but possibly abnormal event had previously
occurred.

• A similar pattern occurred in a previous labour.

A simple, but effective visual method for conveying the
output of the fuzzy model for ECG analysis to clinicians
proposed. The Fetal Condition Matrix  is used to summarize
the fetal state at a glance. The matrix is directly related to  the
clinical guidelines [20] and is one which the midwifes are
familiar with.  A useful extension might be to set thresholds
and trigger alarms when the fetal condition moves into a
dangerous region in the fetal condition matrix. A simple
linguistic approximation may be used in addition to the map
to provide explanation.

The two fuzzy models have not yet been optimized. It
may be necessary to tune their parameters to enhance
performance using a suitable search/optimization algorithm
[22].  The rules for CTG interpretation and for interpreting
ECG need to be integrated.
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Fig. 2. Fuzzy model for CTG analysis

Fig. 3 Fetal electrocardiogram (ECG) showing key features
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